
Communications to the editor

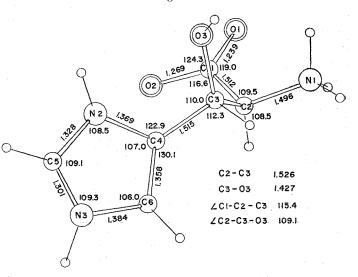
THE CHEMISTRY OF BLEOMYCIN. X*

THE STEREOCHEMISTRY AND CRYSTAL STRUCTURE OF β -HYDROXYHISTIDINE, AN AMINE COMPONENT OF BLEOMYCIN

Sir:

On acid hydrolysis of bleomycin A_2 , one of the diastereoisomers of β -hydroxyhistidine was obtained¹⁾. In order to establish the stereochemistry, X-ray analysis of the monohydrobromide was undertaken. In the present paper, the stereochemistry is shown to be L-erthro- β -hydroxyhistidine (I).

Crystals of the hydrobromide of compound I were prepared by recrystallization from aqueous alcohol. The crystal data are as follows:


Space group: Monoclinic, $P2_1$ Systematic absences: $0k0, \ k=2n+1$ $a=10.35_6 \text{ Å}$ $b=6.08_6 \text{ Å}$ $c=7.11_4 \text{ Å}$ $\beta=96.4_6$ $V=455.5 \text{ Å}^3$

Molecules per unit cell: 2 of C₆H₉N₃O₃·HBr (m.w. 252.06).

The lattice constants and three-dimensional intensity data were measured on a Rigaku Denki four-circle diffractometer up to $2\theta_{max} =$ 60° by the use of molybdenum radiation ($\lambda = 0.71068$ Å). After LORENTZ and polarization

corrections were applied, the absolute scale and the over-all temperature factors were obtained by a WILSON plot. No absorption correction was made. A total of 1111 structure factors was estimated. The structure was solved by the conventional heavy atom method. The position of the bromine atom was easily determined from a three-dimensional PATTERSON function. A brominephased electron density map was then calculated (R=26.6%) and all of the non-hydrogen atoms which corresponded to a plausible structure were recognized in the map. A subsequent FOURIER calculation with all thirteen non-hydrogen atoms gave a R-factor of 14.4 % and all carbon, nitrogen and oxygen atoms could be assigned at this stage. By four cycles of full-matrix least squares refinement varying isotropic temperature factors the R-factor was reduced down to 6.85 %. Further four cycles refinement by the least squares calculation, assuming anisotropic temperature factors for all non-hýdrogen atoms, enabled seven hydrogen atoms to be determined from the difference FOURIER map (R=5.74%). The absolute configuration of the molecule was determined to be the L-series of amino acids with respect to the α -carbon atom (C(2)) by use of the

* Part IX of this series is published in J. Antibiotics 25:755~758, 1972.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Temperature factors are of the form $T = \exp[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl)]$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		x	y	z	β_{11} or B	β_{22}	eta_{33}	β_{12}	eta_{13}	β_{23}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Br	0.0546(1)	0.0000(0)	0.3123(1)	0.0057(0)	0.0169(1)	0.0112(1)	0.0010(2)	-0.0003(1)	-0.0010(2)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	01	0.7810(5)	0.8240(8)	-0.0074(7)	0.0068(5)			0.0006(7)	0.0021(5)	0.0031(9)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	02	0.6122(4)	0.7412(9)	0.1454(7)	0.0055(5)	0.0198(15)	0.0134(9)	0.0027(7)	0.0025(5)	0.0014(10)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	03	0.7088(5)	0.2585(8)	0.0064(6)	0.0071(5)	0.0137(13)	0.0111(8)	-0.0010(7)	0.0021(5)	0.0004(9)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N 1	0.9386(5)	0.5237 (16)	0.1560(7)	0.0042(4)	0.0137(21)	0.0152(11)	-0.0011(9)	0.0010(5)	0.0033(14)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N 2	0.5029(5)	0.2795(10)	0.2235(7)	0.0048(5)	0.0156(15)	0.0099(9)	- 0.0010(7)	0.0009(5)	0.0004(11)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N 3	0.4902(9)	0.2599(17)	0.5213(12)	0.0061(6)	0.0150(15)	0.0137(16)	-0.0011(8)	0.0028(7)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C1	0.7287(6)	0.7153(10)	0.1103(9)	0.0046(5)	0.0107(15)	0.0100(11)	0.0015(7)	0.0006(6)	-0.0021(11)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C 2	0.8057(6)	0.7357(10)	0.2187(8)	0.0042(4)	0.0088(22)	0.0102(9)	-0.0012(7)	0.0010(5)	0.0004(10)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C 3	0.7449(6)	0.3072(12)	0.2015(9)	0.0044(5)	0.0157(18)	0.0100(11)	0.0008(8)	0.0009(6)	0.0011(12)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C 4	0.6278(6)	0.2871(12)	0.3101(9)	0.0048(5)	0.0155(18)	0.0099(11)	-0.0002(8)	0.0012(6)	0.0008(12)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C 5	0.4227(6)	0.2613(12)	0.3557(10)	0.0049(5)	0.0119(16)	0.0142(13)	-0.0014(8)	0.0019(7)	0.0011(13)
$ \begin{array}{c ccccc} H \left(C 3 \right) & 0.819 (6) & 0.200 (12) & 0.279 (9) & 1.6 (1.4) \\ H \left(C 5 \right) & 0.327 (8) & 0.228 (16) & 0.311 (11) & 3.4 (1.9) \\ H \left(C 6 \right) & 0.691 (6) & 0.256 (11) & 0.605 (8) & 2.0 \\ H \left(N 11 \right) & 0.932 (6) & 0.542 (16) & 0.013 (10) & 2.4 (1.7) \\ H \left(N 12 \right) & 0.973 (6) & 0.657 (13) & 0.181 (9) & 1.3 (1.3) \\ H \left(N 13 \right) & 0.999 (7) & 0.433 (12) & 0.209 (10) & 2.3 (1.6) \\ H \left(N 2 \right) & 0.470 (6) & 0.276 (11) & 0.099 (8) & 2.0 \\ H \left(N 3 \right) & 0.462 & 0.270 & 0.660 & 2.0 \\ \end{array} $	C 6	0.6209(6)	0.2752(12)	0.4995(9)	0.0052(5)	0.0156(18)	0.0104(11)	0.0009(9)	0.0010(6)	0.0019(13)
H (C 5) $0.327(8)$ $0.228(16)$ $0.311(11)$ $3.4(1.9)$ H (C 6) $0.691(6)$ $0.256(11)$ $0.605(8)$ 2.0 H (N 11) $0.932(6)$ $0.542(16)$ $0.013(10)$ $2.4(1.7)$ H (N 12) $0.973(6)$ $0.657(13)$ $0.181(9)$ $1.3(1.3)$ H (N 13) $0.999(7)$ $0.433(12)$ $0.209(10)$ $2.3(1.6)$ H (N 2) $0.470(6)$ $0.276(11)$ $0.099(8)$ 2.0 H (N 3) 0.462 0.270 0.660 2.0	H(C2)	0.820(5)	0.569(9)	0.344(7)	2.0					
H (C 6) $0.691(6)$ $0.256(11)$ $0.605(8)$ 2.0 H (N 11) $0.932(6)$ $0.542(16)$ $0.013(10)$ $2.4(1.7)$ H (N 12) $0.973(6)$ $0.657(13)$ $0.181(9)$ $1.3(1.3)$ H (N 13) $0.999(7)$ $0.433(12)$ $0.209(10)$ $2.3(1.6)$ H (N 2) $0.470(6)$ $0.276(11)$ $0.099(8)$ 2.0 H (N 3) 0.462 0.270 0.660 2.0	H(C3)	0.819(6)	0.200(12)	0.279(9)	1.6(1.4)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	H(C5)	0.327(8)	0.228(16)	0.311(11)	3.4(1.9)					
H (N 12) $0.973(6)$ $0.657(13)$ $0.181(9)$ $1.3(1.3)$ H (N 13) $0.999(7)$ $0.433(12)$ $0.209(10)$ $2.3(1.6)$ H (N 2) $0.470(6)$ $0.276(11)$ $0.099(8)$ 2.0 H (N 3) 0.462 0.270 0.660 2.0	H(C6)	0.691(6)	0.256(11)	0.605(8)	2.0					!
H (N 13) $0.999(7)$ $0.433(12)$ $0.209(10)$ $2.3(1.6)$ H (N 2) $0.470(6)$ $0.276(11)$ $0.099(8)$ 2.0 H (N 3) 0.462 0.270 0.660 2.0	H(N11)	0.932(6)	0.542(16)	0.013(10)	2.4(1.7)					
H (N 2) 0.470 (6) 0.276 (11) 0.099 (8) 2.0 H (N 3) 0.462 0.270 0.660 2.0	H(N12)	0.973(6)	0.657(13)	0.181(9)	1.3(1.3)					· · · ·
H (N 2) 0.470(6) 0.276(11) 0.099(8) 2.0 H (N 3) 0.462 0.270 0.660 2.0	H(N13)	0.999(7)	0.433(12)	0.209(10)	2.3(1.6)					
	H(N2)	0.470(6)	0.276(11)	0.099(8)	2.0					
	H(N3)	0.462	0.270	0.660	2.0					
$\Pi(0.3) 0.734 0.100 -0.038 2.0 -0.038 2.0 -0.038 2.0 -0.038 -0.$	H(03)	0.734	0.100	-0.038	2.0					

Table 1. Final atomic parameters

anomalous dispersion effect due to the bromine atoms. Five additional cycles of the least squares refinement using anisotropic temperature factors for the non-hydrogen atoms and isotropic ones for hydrogen atoms gave a R-factor of 3.99 %. Finally all ten hydrogen atoms could be recognized at reasonable positions which gave acceptable bond lengths and angles and hydrogen bonds. Final R-factor was 3.95 % for 1111 reflections. The final atomic parameters are given in Table 1.

Thus, the molecular structure of I is concluded to be L-erthro- β -hydroxyhistidine. The intramolecular bond distances and angles are shown in Fig. 1 and their average standard deviations are 0.009 Å and 0.58°. One of the outstanding features of the structure is the conformation around the C(2)-C(3) bond; the imidazole is gauche to the carboxyl group and trans to the amino group, while the hydroxyl group is gauche to the both groups. It is apparent that the introduction of a hydroxyl group on the β -carbon atom (C(3)) causes the imidazole to be in an unusual position in comparison with that found in published data for various histidines^{**}. The imidazole ring is positively charged and the five ring atoms and C(3) atom are nearly coplanar with a maximum displacement of 0.004 Å for the C(5) atom.

> Gunji Koyama Hikaru Nakamura Yasuhiko Muraoka Tomohisa Takita Kenji Maeda Hamao Umezawa

Institute of Microbial Chemistry Kamiosaki, Shinagawa-ku, Tokyo, Japan

^{**} To date two types of the conformation have been reported for histidines; the folded conformation in which the imidazole ring is gauche to both the carboxyl and amino groups, was found in L-histidine hydrochloride monohydrate²); the extended conformation in which the imidazole ring is trans to the carboxyl and gauche to the amino group, was found in DL-histidine hydrochloride dihydrate³, orthorhombic L-histidine⁴, monoclinic L-histidine⁵ and DL-histidine⁶.

111

Үоісні Іітака

University of Tokyo, Faculty of Pharmaceutical Sciences Bunkyo-ku, Tokyo, Japan

(Received October 5, 1972)

References

- ΤΑΚΙΤΑ, Τ.; Τ. ΥΟSΗΙΟΚΑ, Υ. ΜURAOKA, Κ. MAEDA & H. UMEZAWA: Chemistry of bleomycin. V. Revised structure of an amine component of bleomycin A₂. J. Antibiotics 24:795~796, 1971
- DONOHUE, J. & A. CARON: Refinement of the crystal structure of histidine hydrochloride monohydrate. Acta Cryst. 17:

1178~1180, 1964

- BENNETT, I.; A.G.H. DAVIDSON, M.M. HARDING & I. MORELLE: The crystal structure of DL-histidine hydrochloride dihydrate. Acta Cryst. B26: 1722~1729, 1970
- MADDEN, J. J.; E. L. MCGANDY & N. C. SEEMAN: The crystal structure of the orthorhombic form of L(+)-histidine. Acta Cryst. B28: 2377~2382, 1972
- 5) MADDEN, J.J.; E.L. MCGANDY, N.C. SEEMAN, M. M. HARDING & A. HOY: The crystal structure of the monoclinic form of Lhistidine. Acta Cryst. B 28: 2382~2389, 1972
- EDINGTON, P.: Ph. D. Thesis, Edinburgh University, Edinburgh, 1970; cited in reference 5)